If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+30x=10
We move all terms to the left:
5x^2+30x-(10)=0
a = 5; b = 30; c = -10;
Δ = b2-4ac
Δ = 302-4·5·(-10)
Δ = 1100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1100}=\sqrt{100*11}=\sqrt{100}*\sqrt{11}=10\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{11}}{2*5}=\frac{-30-10\sqrt{11}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{11}}{2*5}=\frac{-30+10\sqrt{11}}{10} $
| 2x+(2x)-14=100 | | 4=-2(x+4) | | -6(8+6n)-8=30+7n | | -4r=2 | | Y=8/4x+-10 | | 5-z=-14 | | 3(q+1)=6 | | -9(n-4)=5-(n-4) | | 6(5x+7)=-108 | | -8+z/2=2 | | -(v+-1)+-5=0 | | 12n+4=34-3n | | -28=2u+5u | | 6(3x-2)-3(4+5)=33 | | 8^x^2-32=64^2x | | 6=3(p-3) | | 4x-2+-7x=119 | | 1/4=2/5x+1=21/4 | | r-4/2=2 | | n/3+3=4 | | -2x4+10x2+-8=0 | | -2(2x+9)=26 | | 4.9=6.1-0.6x | | √(2x-5)^3-10)=17 | | (5y+35)=(5y+35) | | 0.06k–0.18=0.12 | | 2(s-4)=6 | | 12x-40=120+4x | | i=3/4(27)+3/2/2 | | v/2-17=2 | | 0.25x^2+5x=0 | | 5x+8=x-48 |